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Thee-dim~ional flow over smooth blunted bodies of a hypersonic stream of 
a homogeneous viscous gas in the presence of injection or suction is considered. 
A numerical solution is obtained for the problem in a wide range of Reynolds 

numbers and of injection (suction) parameters. Velocity and temperature pro- 
files across tbe shock layer are presented, as well as the dependence of the 
coefficients of friction and heat transfer at the body surface, on the Reynolds 
number and the injection (suction) parameter; the dependence on the injection 
parameter is universal. An approximate analytic solution of the problem, which 
is in satisfactory agreement with the numerical solution for low Reynolds num- 
bers is obtained using the integral method of successive approximations, 

The asymptotics of equations of the hypersonic shock layer is analyzed in the case 
of high Reynolds numbers in the presence of injection. An analytic solution is present- 
ed of the problem of strong injection in the approximation of two inviscid layers 
separated by a contact surface. Solution of the boundary layer equations is obtained 
using the same difference grid, and it is shown that the distinction from solutions of 
the shock layer in terms of the coefficient of friction in the direction of the body cross 
section with the largest curvature radius can be considerable even at Reynolds numbers 

of the order of 10* . This distinction increases with increasing suction and decreases 

with increase of injection, With a fairly large injection parameter the friction co- 

efficient calculated using boundary layer equations is the same as the coefficient ob- 
tained from solutions of shock layer equations at high Reynolds numbers. 

Certain results of numerical solution of equations of the mixing layer which forms 
close to the contact surface with considerable injection from the body surface are 

presented. 
The effect of viscosity and thermal c~ductivi~ behind a considerably curved shock 

wave was first considered in [l]. Further investigation of plane and axisymmetric flows 
of rarified gases, using the theory of hypersonic viscous shock layer with generalized 
Rankin - Hugoniot relations behind the shock wave [2] were carried out by a number 
of authors (see (3 --lo] and other). Three-dimensional hypersonic flow of viscous 
heat-conducting gas past blunt bodies was calculated in [ll, 121. 

1. Equations of three- dimensional hypersonic 

viscous boundary layer. Boundary c o n d i t i o n s, Let us 

consider the three-dimensional flow over a smoothly blunted body, We introduce 
some arbitrary curvilinear coordinate system normally attached to the body surface. 
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Let s? = conat be the equations of a set of surfaces parallel to the body surface 
zs = 0 and b1 and x2 selected on the surface. The equations of the three- 

dimensional hypersonic viscous shock layer in a homogeneous gas in the system of co- 

ordinates {a!} are of the form [12] 

(1.1) 

(32 = bVw2 
p,““3,’ 

K=eRe 

I 

a = a11az2 - a212, a33 = 1 

where summation is carried out over pairs of like indices, excluding in indices in 

parentheses which do not imply summation. Latin indices run through I, 2, 3 and 
relate to space .@‘, Greek indices assume the values 1, 2 and indicate associa- 

tion with the body surface contained in A3; V,U 111, b’,u 121, &Vrn u [31 are 

physical components of the velocity vector, pWV,*P, e-lpW P, TOT, pop, 

and h are, respectively, the pressure, density, temperature, and the coefficients of 

viscosity and thermal conductivity, CP = const is the specific heat of gas: aas, 

bars are components of symmetric covariant tensors that determine the first and 

second quadratic forms, respectively, of the body surface. All linear dimensions are 
normalized with respect to the characteristic linear dimension R, and the normal 

coordinate with respect to ER. Subscripts 00 and w denote quantities in the on- 

coming stream and on the body surface, respectively. If an orthogonal coordinate 
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system is selected on the body surface, ora = (). 

Equations (1.1) are obtained from Navier - Stokes equations defined in the system 
of coordinates {xi} and physical components of vectors and tensors [13] in which E 

and Rem1 approach zero and the product K = ERe is of order unity. Terms with 
longitudinal pressure gradients are retained in Eqs. (1. l), since at high Reynolds num- 
bers they are of considerable importance in the layer close to the body surface. At 

low Reynolds numbers they can be omitted. The system of Eqs. (1.1) thus defines the 

flow in a hypersonic viscous shock layer in a wide range of Reynolds numbers from 

moderately low to high. When I( + oo the degenerate equations (1.1) coincide 

with the equations that define in Newtonian theory the flow of inviscid gas [14 -161. 
It can be shown, as in [17], that in the presence of injection from the body surface 
under conditions K > 1, Re,,. 2~ 1, G & 1, 6 < 1 , system (1.1) provides an 

asymptotically correct defmition of the flow of gas in the shock layer. 
As the boundary conditions at the shock wave for x3 = x83 we use the modified 

Rankin - Hugoniot relations [l] in the thin layer approximation 

(1.2) 

H=1’3- aG 

V a(aa)a(BB, 
u [aI 7.i rm 

At high Reynolds numbers (K -+- 00) relations (1.2) convert to the conventional 

Rankin - Hugoniot formulas in hypersonic approximation. 
We define the boundary conditions at the body surface in the absence of slip and 

temperature jump in the following~dimensionless form: 

x3 = 0, u [al = 0, pu [31 = G (xl, $), T = T, (x1, x") (1.3) 

The slip rate and temperature jump are quantities of the order of &‘/‘K-l [18]. 

2. Numerical solution of equations of a three- 
dimensional hypersonic viscous shock layer in the 
8 t a g n a t i o n p o i n t n e i g h b o r h o o d. For the numerical solution of 

the problem we substitute for the variables in Eqs. (1.1) the Dorodnitsyn’s variables 

generally used in the theory of three-dimensional boundary layer (see, e. g. , [19]), 
and introduce new variables using formulas 

(2.2) 
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with the equation of continuity indentically satisfied. Functions 
(El, E”) will be defined below. 

%*(P, E’), T* 
The operator D in new variables is of the form 

Let US consider the flow over a smooth convex body whose surface s is specified 
in the Cartesian coordinate system in the form ys = f (y’, y”). By selecting P = y” 
as the curvilinear coordinates on the surface of the body and the set of normals to sur- 
face S , as the coordinate lines z3 , we obtain 

a OLCZ = 1 + 4rz2, a12 = qlqa, bag = - r'afi 1 -C/a (2.4) 
a = 1 + qla + q2a, qa 3 af 1 d~a, rap z a2f I d~axaxe 

If the oncoming stream velocity vector coincides with the direction of the y’ - 
axis, the physical velocity components u [il, in the thin layer approximation (x3 

z 0)are 

u [al, = Va(,,)q, 1 a, U 131, = - 1 / v/a 

Let us, now, consider the flow over an elliptic paraboloid at zero angle of attack, 
whose surface we specify .in the form 2~s = (~1)” + k (y”)“, where k = R I 
R,; R and RI are the radii of principal curvatures at the paraboltd stagnation point. 

Settmg u,* ($1, x2) = u [al,, T* (~9, x2) = u2 [31, we resolve all singularit- 
ies occurring in coefficients of equations for the stagnation point. 

Using (1.1) and (2.1) - (2.4) we obtain for the three-dimensional flow of gas in 
the stagnation point neighborhood the following equations: 

pas ’ =, dI=l, d2=k 
q,p W 

The last of Eqs. (2.5) were obtained from the third of Eqs. (1.1) to which the 
operator (dcaJEJa))-l i?li?~a was applied. 

Boundary conditions (1.2) and (1.3) now assume the form 

C=I, cp,+kq+=llA (2. ‘3) 
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Equations (2.5) with boundary conditions (2.6) and (2.7) were solved numerically 
with the following values of parameters: k = 0, 0.1, 0.4 ; 1.0; (r = 0.71; 
E = 0.1; I& = 0.1, 0.5; -0.25 < G < 0.25; i < Re < 5.10'; p = eg/z. 

The implicit finite-difference scheme [ZO] with approximation accuracy 0 (A<‘) 
was used. To increase computation accuracy for high Reynolds numbers the computa- 
tion grid was compressed near the surface of the body. 

Some of the results of computations are shown in Figs. 1-6. Characteristic pro- 

files of tangent velocity components ZJ = dq~~ f ag, w = 89, / ag and of temperature 
8 across the shock layer appear in Fig. J for G = 0, k = 0.1, Bm= 0.1 and Re = 5 
50, 5.10*, 5.10a, S*i05 (curves 1-5 respectively), The formation of a thin 

0 0.5 I.0 

Fig. 1 
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boundary layer at the body surface at high Reynolds numbers can be easily traced there, 
The profiles of u and 13 for plane (k = 0) and axisymmetric (k = 1) flows were 
presented in ~211. 

Fig. 2 

lg Re 

Fig. 3 
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The dependence of friction coefficients rr and r2 (curves 1 and %) and of 
heat exchange q (curve 3) on the Reynolds number, determined using the theory of 
viscous shock layer, is shown in Fig. 2, for h- ~2 0.1 and 0 W -= 0.1. The straight 

lines 4-t; relate to respective coefficients of friction and heat exchange (straight 
lines 4 and 5 for ‘tr and tZ , 6 for 9) and were computed using the boundary 

layer theory (see Sect. 4). The formulas for ra and q are of the form 

h aT 1A 80 
q’ = _---_T*_-_ q’ 1/Ke 

PmVL 
&x3 - 2a1/a ag b. 7 

q=p 
T* 

The analysts of flow computation results obtained in [17,21] shows that in a viscous 
shock layer the properties of gas flow in that layer are determined by the parameter 
F zzz - G J& (1 -+ /c)-“%~” (- &)-“’ generally used in the laminar boundary lay- 

er theory. The profiles of U, w and 0 across the shock layer are shown in Fig. 3 by 
solid lines for Reynolds numbers Re = 5.103, k = 0.1, OW = 0.1 with--F = 0, 3.03, 

and 7.03 (curves 1-3 refer). It will be seen from Fig. 3 for - F >s 2 that the 
boundary layer becomes separated from the body surface and forms the mixing region. 

The dependence of coefficients 

of friction and heat exchange (norm- 

alized with respect to their values 
for F = 0) at the body surface on 
the injection parameter -F is 

shown in Fig. 4 by solid lines (the 
following notation is used:raf =ra 1 
(ra)fl=o> 4f = 17 1 ic/)~kO) for /c = 0.1, 

0 < G < 0.25, 10 < Re 6 5.10”; 
curves 1 - 3 correspond toz,f, ‘bf, 

qf, and the dash lines to the asym- 

ptotic solution of equations of the 
boundary layer with the strong in- 

jection 1221 ). Computations have 

Fig. 4 

-F -2 -1 0 

Fig. 5 
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shown that the points that correspond to various values of Re and G lie on a single 

curve; in this sense the obtained equations are universal. 

The dependence of coefficients of friction and heat exchange normalized with 
respect to their values for F = 0 on the suction parameter F have also a universal 
character (see Fig. 5, where the notation is the same as in Fig. 4). 

3. Approximate analytic solution of equations 
of three-dimensional hypersonic viscous shock 

layer in the stagnation point neighborhood. We 

introduce new unknown functions by formulas 

(3.1) 

where subscript s denotes parameters of gas immediately behind the shock wave. 

The boundary conditions for functions v, and z) are 

5 = 1, vcc =2)=1; ~=O,v,=~=O (3.2) 

The system of Eqs. (2.5) with allowance for (3.1) and (3.2) can be reduced to the 
form . 

Vu= 1 +F,(~)+K~jl-‘d~ 
1 

6= l+F,(~)+&~c~l-~d~ 
1 

K, = - [I + Fa(O)] (jl-lds)+ 
1 

KS = - [I + F3(0)j ([OdLj-’ 

and boundary conditions (2.6) in new variables become 
i 

-=i+lA$ 
i - 0s 11 a$k -=-- 

‘a %--% c5 a; 

(3.3) 

(3.4) 

(3.5) 
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The problem has been, thus, reduced to the simultaneous solution of Eqs. (3.3) 
and (3.5) for the variables v,, 6, A., ccc, 0, l The quantities P, P,, p can be 
eliminated from (3.3) and (3.5) using expressions (3.4). To soive system (3.3), 

(3.4) we use the method of successive approximations [12] consisting of the followin@ 
Let the (n - I)-st approximation of functions r&(“-‘) and ecrrl) be known. 

Substituting them into system (3.5) we determine A, CCL, 0,. When A, c,, 0, 
are known, functions vacn) and tic”), are determined by (3.3) after the substitu- 
tion into their right-hand sides of r>U(‘L-l), #“-l). Repetition of this process yields sub- 
sequent approximations. The analysis of solutions of equations for a hypersonic visc- 
ous shock layer (Sect. 2, see also [2 -4, 81 ) shows that the velocity and temperature 

profiles across the shock layer in terms of Dorodnitsyn’s variables with parameter K 
of order unity, are close to linear. Hence, as the zero approximation we specify 

(3.6) 

Let us determine the analytic solution of the problem in the first approximation. 
Substituting (3.6) into (3.5) and specifying the viscosity coefficients as CL = 8 , we 
obtain 

LX = g + l/-g” + 2gr’, g = (1 + G) / (1 + k) (3.7) 

cc2 = AK / (1 f AK), 0, = (0, + CT AK) / (1 + DAK) 

of the viscosity coefficient is proportional to 0, 0 < w < 1, the solution of 
system (3.5) can be obtained by determining for fixed o, CO, 8, the dependence 

on 0, of the quantity 

2gK = mo-l (f3, - 0,) (1 - O,)-l~sW-l 

m = (e, - 0,) [(I - a) 0, + 0 - 6,1-l 

For the determination of ca and A we have 

c a = m, A = 2gm-1 

The substitution of (3.6) into (3.3) and (3.4) yields 

(3.8) 

(3.3) 

F, (5) = i * [+ (c+’ - 1) + & (5i” - I)] (3.10) 

i=O 

A a2 = (- (1 + k) 1 2 + dw) c,, &a = @,?a, / c(a) 

A = E (8, - %o> Pa, 1 c(a), 

A;; = A,, = A,, = 0, 
A,, = G J A 

A,, = -(I +k) c,/2 
P a1 = - 2d,,, (1 + Adcap, 2J 3), P,, = 2Adcaj2 c, 213 

aa = Zw-1, b, = lBvl - lwA1, a3 = oa,, b, = ob, 

In the computation of integrals the quantity I was approximated thus: 
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1-l = I,-1 + (Is-1 - 1,-l) 5 

when A, c,, 8,, F,, K, are known, dcp, / 8 5, 8 are obtained from (3.3) 

and (3. l), and the coefficients of friction and heat exchange from formulas (2.8). 
Thus the problem is completely solved in the first approximation. Comparison of 

this SOhtiOn (SIIXIU circles) with the exact numerical solution is shown in Fig. 1 and 

in Fig. 2, (where small circles correspond to z,, dots to ‘r’s, and crosses to q). 
The coefficients of friction and heat exchange were calculated by formulas (2.8) 

in which values of A calculated by the last of formulas (3.5) in whose right-hand 
side the values of vE) and c$) S obtained in the first approximation, were substitut- 

ed. The presented curves show that the approximate analytic solution is in good agree- 
ment with the numerical one for 0.1 < K 4 5. For higher values of parameter K 
that correspond to high Reynolds numbers, higher approximations are required. Similar 
results are obtained in the presence of injectron. 

4. On the asymptotic solution of equations of 
three-dimensional hypersonic viscous shock layer 
in the stagnation point neighborhood at high 
R e y n o 1 d s n u m b e r 8. We consider such Reynolds numbers at which the in- 
equality es Re > 1 is satisfied. In the case of high Reynolds numbers problem 

(2.5) - (2.7) is singular. Its asymptotic solution can be obtained using the method of 

external and internal expansions. The asymptotics of equations of the hypersonic visc- 
ous shock layer depends, then, on the injection parameter -F. When 

- F 6 1 the shock layer can be divided into an inviscid layer and ‘the boundary 

layer adjacent to the body surface. When - F > 1 a three-layer flow pattern 

obtains according to which effects of molecular transport may in the first approxima- 

tion be neglected in the layers adjacent to the body surface and to the shock wave, 
while in the intermediate (mixing) region these effects play a predominant part. 

When solving the external problem the mixing layer can be replaced by a discontinu- 

ity surface with respective conditions on it [17,21]. some of the numerical solutions 

of the external problem are shown in Fig. 3 by dash lines (system (2.5) - (2.7) with 
1 f 0 and conditions ‘pr + kq, = 0, Pa+ = P,- was solved at the contact 

discontinuity). The external problem can be solved in quadratures by setting in Eqs. 

(2.5) the longitudinal pressure gradient P, (5) equal P,, which is determined 
by the Buseman -Hays formula (formula 3.6.35 in [W] ) which is asymptotically 
correct for small values of parameter E (see [4,16,17] ). With this taken into 

account the solutron of the external problem is of the form [l&223: 

for the injection layer 

S (s -f- PI)” - (B, - SP (4.1) 
n=- ,._ . 

1/b 

2s-g tcp1+ kcp2) 

(0 < s < I%), cc 
and for the shock layer 

(s-t Bl)” + cg, --s)@ 
s 

s s + kwp -‘I2 
= - exp SB _ ;’ da, 5” = G l/pit, [ S2 FBI% 

= 50($1) O 

0 

u=s 
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@a = 1/-- &Pa, 0 = l/&,lll,, 5” = AC) 

where ( <coA-l is the thickness of the injected gas layer. 
At small injection parameters - F 6 1 the internal problem in the usual ap- 

proximation involves solution of boundary layer equations which in the stagnation 
point neighborhood are of the form of Eqs. (2.5) in which it is necessary to set A = 

1, CYP I ag = ap, I ag = 0, P, = P,,, where Pa,,, is specified by the solution 
of the external problem. 

Boundary conditions at the body surface are (2.7), and at infinity are of the usual 
form 

5 -+oo, @,/85-+( -ePaco/dca#‘z, 0-+-l (4.3) 

The system of equations of the boundary layer with boundary conditions (2.7) and 
(4.3) in the case of injection or suction were solved numerically using the same 
method and the same grids, as for the system of shock layer equations. 

Comparison of coefficients of friction and heat exchange are shown in Fig. 2, where 
the straight lines are solutions of boundary layer equations. It will be seen that the 

difference in the friction coefficient r, in the direction coinciding with the plane 

of the body greatest radius of curvature can be considerable even for high Reynolds 
numbers. The difference in coefficients 11 and Q is considerably smaller. This 

difference is explained as follows. 
The analysis of solution of the external 

problem (4.2) shows that a thin layer of 
r.?r strong vorticity is formed close to the 

surface of a body elongated in the trans- 

1. Y verse direction (small 1; ) in the flow 
past it. One of the tangent components 

of the velocity vector has an infinite 

1.2 derivative with respect to the transverse 
variable on the body surface (see Fig. 3, 
where lines 4 and 1 have been calcul- 

I. l7 
-I I 2 -F 

ated for the salme values of parameters). 
The other velocity component and the 

Fig. 6 temperature have zero derivatives with 
respect to the transverse coordinate when 

O<k<l. For a correct determination of asymptotics of shock layer equations 
for high Reynolds numbers it is, thus, necessary to take into account the effect of 
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vorticity which is usually omitted in the conventional formulation of the first approxi- 
mation of the problem in the theory of the boundary layer. 

Note that in the case of plane flow the derivative of the tangent velocity compon- 
ent with respect to the transverse coordinate vanishes, while in the case of an axisym- 
metric flow it is finite [Zl], which at high Reynolds numbers results in the reduction 
of the external flow vorticity effect on the coefficients of friction and heat exchange 
at the body surface. 

The ratio of friction coefficients %s7 on the body surface in the direction of Es 
plotted in Fig, 6 obtained by solving equations of the shock and boundary layers 
(curves I and 2 correspond to k = 0.1 and 0.4), show that as the suction para- 
meter is increased, this ratio increases because then the principal terms in the bound- 
ary layer equations are associated with molecular transport effects [23]. With increas- 
ed injection the ratio of friction coefficients decreases, and beginning at an Injection 
parameter - F 3 2.5 that ratio remains close to unity. This is explained by that 
the basic factor in the coefficient of friction at the body surface at high injectionpaca- 
meters is then the pressure gradient in the longitudinal direction [17,22], In the 
transverse direction of the injected gas layer that parameter varies only little. It can 
be shown that for - F > 1 and 6 4 1 the ratio of friction coefficients in the shock 
and boundary layers is of order 

For - P> 1 so~tion of the internal problem consists of solving equations of 
the boundary layer with conditions (4.3) and conditions [l?] 

53 - 00, df4, I ag -+ I- EP,, f pdq,p, 8 -+ 9, 
r; = &, ~1 + kcp, = 0 

Some results of the solution of this problem are shown in Fig. 3 by dash-dot lines 
from which it can be seen that the difference in profiles of u and 6 calculated by 
equations of the viscous shock layer and by equations of the mixing layer are insignific- 
ant in the viscous part of the shock layer, while in the profiles of 1~’ it is considerably 
greater. In this case a layer of high vorticity is formed near the surface of contact 
discontinuity. 

The author thanks G. A, Tirskii and G, G. Chernyi for discussing this paper. 
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